kantver - Fotolia

Evaluate Weigh the pros and cons of technologies, products and projects you are considering.

# How do I figure size requirements for a new UPS unit?

## Data center facilities

### Looking for something else?

TECHNOLOGIES
Power load requirements Uninterruptible power supplies

So you need an uninterruptible power supply unit, but you're having trouble sizing it. How do you figure it out?

Some uninterruptible power supply  (UPS) systems are rated in kilowatts (kW) and others in kilo-volt-amperes (kVA).

### UPS terminology and facts

KW and kVA simply mean 1,000 watts or 1,000 volt-amperes -- the kilo prefix being used for larger numbers.

The basic rule of physics that watts = volts x amps is based on direct current circuits. Alternating current (AC) supplies our buildings and equipment. AC is more efficient for power companies to deliver, but when it hits the equipment's transformers, it exhibits a characteristic known as reactance.

Reactance reduces the useful power (watts) available from the apparent power (volt-amperes). The ratio of these two numbers is called the power factor (PF). Therefore, the actual power formula for AC circuits is watts = volts x amps x power factor. Unfortunately, the PF is rarely stated for most equipment, but it is always a number of 1.0 or less, and about the only thing with a 1.0 PF is a light bulb.

For years, large UPS systems were designed based on a PF of 0.8, which meant that a 100 kVA UPS would only support 80 kW of real power load.

The majority of large, commercial UPS systems are now designed with a PF of 0.9. This recognizes that most of today's computing technology presents a PF of between 0.95 and 0.98 to the UPS. Some UPS systems are even designed with PFs of 1.0, which means the kVA and kW ratings are identical (100 kVA = 100 kW). However, since the IT load never presents a 1.0 PF, for these UPS systems, the actual load limit will be the kVA rating.

Regardless of how the ratings are stated, a 100 kVA UPS will never support an actual 100 kW load in the real world of the data center. The only way to really know how near you are to capacity is to read the UPS display. The Percent Load will tell you how close you are to the maximum in either kW or kVA, but be aware that this percentage will be displayed for the most heavily loaded phase, not for the total UPS capacity.

Large UPS systems are three-phase. In the U.S., you get 120 volts between any one of the phases and what's called the neutral conductor, and you get 208 volts -- not 220 or 240 -- between any two phase conductors. In Europe, you get 230 or 240 volts between any phase and neutral. Connections aren't made between phases. Unless the loads on all three phases are close to equal, you won't be as close to maximum total capacity as the display says you are. You need to further check the loads on all three phases to determine that. Take, for example, a 100 kVA UPS with a 0.9 PF, or 90 kW capacity. If Phase A is loaded to 95%, and Phase B to 60%, and Phase C to only 25%, the UPS will still have 40 kVA or 36 kW unused. That's 40% of its capacity remaining, despite the 95% reading.

Neither the kW nor the kVA capacity of the UPS can be exceeded, but because of the higher PF numbers, it is usually the kW rating that governs today. There are, however, some UPS systems on the market that are PF-corrected so that the kW and kVA ratings are the same.

### Nameplate data on UPS systems

The biggest problem when figuring size requirements for UPS units is determining their actual load. Many data hardware manufacturers still provide inadequate or misleading power data on their equipment. Bigger manufacturers are usually linked to or have a configurator on their websites. These tend to give quite accurate information if used correctly. But no tool can give you an accurate estimation of total load. It's up to you to develop realistic numbers.

Beware of using the nameplate. This is a legality rating, and will usually give a much higher volt-ampere rating than the unit will ever draw. For example, consider a unit with a nameplate that reads 90 - 240 volts at 4 - 8 amps with a 500 watt (W) power supply.

First, the numbers are backward. The larger amperage goes with the lower voltage. If you assume a nominal 120 volts at 8 amps, you get 960 VA. A PF of 0.95 would yield 912 watts. No power supply is that inefficient, and a power supply almost never runs at full power. Therefore, it is highly unlikely that this device will ever draw more than 500 watts of power, but if you want to be really conservative, multiply by 1.1 and figure 550 Ws of input power.

And don't get trapped by dual-corded equipment. The power supplies share the load and either one is supposed to be able to carry the full load. Therefore, a unit with two 500 W supplies should still be figured as if it had only one.

### UPS capacity ratings

Once you have a realistic load estimate, plan to run a UPS around 80% of actual rated capacity. That provides headroom for peak operating conditions, gives you capacity to install a duplicate system before you decommission an old one, or lets you absorb a little growth before you outgrow the unit. For a planned load of 80 kW, a 1.0 PF UPS rated at 100 kVA/100 kW should be sufficient if you keep your loads phase-balanced within about 5%. A UPS with a 0.9 PF will need a higher kVA rating; 125 kVA would give you 112.5 kW capacity, which also gives you a little additional headroom.

If you foresee substantial near-term growth, consider a modular UPS. These come in two flavors: a frame sized for more than you need, but with physical UPS and battery modules installed only as required; or a system of higher total capacity, but with firmware-configured to limit it to a lesser load until you need more. Either way, you only pay for what you need now, and buy the additional capacity as it's required. The savings is not just capital cost. A UPS also runs more efficiently when it's loaded to higher capacity, so you save in electrical operating costs as well. Of course, with a 2N redundant UPS, you'll actually run each UPS at half the total load, which makes it even more important to size correctly. It can be very inefficient to run below 40%.

The last consideration is generator loading. Different UPS designs present different electrical characteristics to a generator. Your electrical engineer or facilities electrician will need to examine both the UPS and generator characteristics to make sure the generator won't stall when the UPS load is suddenly switched to it in an emergency.

#### Next Steps

Balance three-phase power

More on UPS sizing

Maximizing UPS performance when sizing goes wrong

This was last published in February 2017

## Content

Find more PRO+ content and other member only offers, here.

#### Join the conversation

Send me notifications when other members comment.
How did you figure out the right size requirements for your UPS system?
Cancel
how to get the maximum required UPS system from my following loads
1. 1500 kva CCTV cabinet
2. 2000 kva Telecom Cabinet
3. Switches and RTU's 2500 kva
best regards
Cancel
Cancel
how do i figure out the 3 hour ups backup supply for my load?
how do i calculate my load capacity
Cancel

Hello,

I am trying to determine my UPS input voltage, output voltage, and minimum current rating.  Where can I locate this information.

Cancel

## SearchWindowsServer

• ### Roll your own Windows patching tool with PowerShell

This tutorial based on PowerShell helps administrators build an automated routine that audits Windows machines, then applies ...

• ### Server Core management remains a challenge for some

Server Core, the minimal Windows Server deployment, removes some admins from their GUI comfort zone, but its benefits reduce some...

• ### Meltdown and Spectre vulnerabilities dominate January Patch Tuesday

Complications surrounding the fix for the Meltdown and Spectre microprocessor architecture flaws will make the patching process ...

## SearchServerVirtualization

• ### Copy files from the host to a Hyper-V machine

There are many ways to copy files from the host to a Hyper-V machine, including Enhanced Session Mode and the Copy-VMFile ...

• ### VMware VVOLs adoption now poised to grow after slow start

VVOLs' low adoption rates lie in overhyped expectations and the risk-averse nature of enterprise IT. The problem it solves is ...

• ### Migrate cloud applications back to on-premises applications

In the cloud frenzy, it's easy to lose sight of what to do if the cloud doesn't work. With time, patience and cost planning, ...

## SearchCloudComputing

• ### Google Cloud Dedicated Interconnect offers VPN alternative

Google's Dedicated Interconnect enables an enterprise to privately connect its data center to the public cloud. Here's a ...

• ### Chip bugs hit cloud computing usage less than first feared

IT shops expected their cloud usage to flag due to recent chip bugs, but most environments survived the patches unscathed.

• ### Providers continue to push hybrid cloud technologies in 2018

The hybrid cloud market changes rapidly, as major cloud providers release new services to bridge private and public platforms, ...

Close